If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+64t-32=0
a = -16; b = 64; c = -32;
Δ = b2-4ac
Δ = 642-4·(-16)·(-32)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{2}}{2*-16}=\frac{-64-32\sqrt{2}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{2}}{2*-16}=\frac{-64+32\sqrt{2}}{-32} $
| 7y+3y=9y-3 | | 6/7(k+7/9)=31/3 | | 8(4x-6=-6x+30+12x | | 2x+1.5x=1421 | | $171.18/1.08=x | | 1/2x+40=4x-15 | | 6y-17=31 | | 5-1/2x=5/8x-12 | | 2x^2-26x=-2x^2-3x-15 | | 7x-5.28=1.23 | | 3(x)-14.62=x | | 75x3= | | 5(2+6d)= | | -2j+-20=10 | | 2^x*(1/32)=32 | | 3/x+3=36 | | 4b=1/3b-15 | | 4a-3a-2=2a-2 | | 18y+y=1 | | 6=3(m-6) | | -4(-5-b)=1/3(b+15) | | 4t-(-4)=12 | | 2x+14=2x+9 | | 7=(6q+8)/4 | | 1/x=2/6 | | (x/x)=-2x | | X+0,75y=10,5 | | 2x^2-15x=-3x^2-4x-6 | | -20+15j=16j | | -19+p=-6p+16 | | 13a+7=3(3a+3)-10 | | -15-8u=7-4-2u |